Ерік Кавана: Дами і джентльмен, привіт і ще раз вітаємось до TechWise. Мене звуть Ерік Кавана. Я буду вашим модератором для Епізоду 3. Це нове шоу, яке ми розробили разом з нашими друзями з Техопедії, дуже класним веб-сайтом, який очевидно фокусується на технологіях, і, звичайно, тут, у The Bloor Group, ми дуже акцентуємо увагу на підприємстві технології. Отже, корпоративне програмне забезпечення будь-якого типу, а також весь формат TechWise був розроблений таким чином, щоб дати нашим присутнім справді добре поглянути на конкретний простір. Отже, ми зробили, наприклад, Hadoop, ми провели аналітику в останньому шоу, і в цьому конкретному шоу ми говоримо все про хмару.
Отже, це називається "Імператив хмари - що, де, коли і як". Ми сьогодні поговоримо з парою аналітиків, а потім з трьома постачальниками. Отже, Qubole, Cloudant та Attunity - спонсори сьогоднішнього шоу. Велике спасибі цим людям за їх час та увагу сьогодні, і звичайно велика подяка всім вам там. І майте на увазі, що ви, як відвідувачі цих шоу, ви граєте важливу роль. Ми хочемо, щоб ви ставили запитання, брали участь, інтерактивні, дайте нам знати, що ви думаєте, тому що, очевидно, вся мета шоу тут - допомогти вам, хлопці, зрозуміти, що там відбувається у світі хмарних обчислень.
Хмарна імперативна палуба
Отже, давайте рухатимемося прямо вздовж. Перший господар, ваш господар там, Ерік Кавана, це я, а потім нас доктор Робін Блур закликає з аеропорту, і насправді, і наш хороший друг Гілберт, Гілберт Ван Кутсем, незалежний аналітик, також збирається поділитися кілька думок з тобою. Тоді ми почуємо від Ashish Suchoo, генерального директора та співзасновника Qubole. Ми почуємо від Майка Міллера, головного вченого компанії Cloudant і нарешті від Лоуренса Шварца, віце-президента з маркетингу Attunity. Отже, сьогодні у нас викладено чимало вмісту.
Отже, хмара - едикт зверху - це концепція, яка прийшла до мене днями, коли я думав про це. Дійсно, хмарні обчислення в наші дні просто величезні. Я маю на увазі, що насправді досить захоплююче спостерігати за розвитком цього матеріалу, і один із прикладів, які я часто даю, - це сама технологія веб-мовлення. Звичайно, ті з вас, хто зателефонував рано, почули цікаві технічні проблеми. Це одна проблема з хмарою - це вона змінюється, змінюються формати, змінюються стандарти, змінюються інтерфейси, а іноді, коли ви намагаєтесь з'єднати дві різні області разом, виникають певні труднощі, у вас виникають певні проблеми. Отже, це насправді одна з проблем, про які слід хвилювати хмарні обчислення. Будьте уважні до архітектури! Ви можете бачити це в останній кулі.
Однією з речей, які ми робимо, так само, як і додаткова примітка до нашого веб-трансляції, є окремий постачальник телефонних конференцій. Тоді ми використовуємо WebEx. Ми не використовуємо аудіо WebEx, тому що відверто кажучи, один раз ми використовували аудіо WebEx років тому, і воно розбивалося і спалювалось найнеприємнішим чином. Таким чином, ми не готові ризикувати знову. Отже, ми використовуємо власну аудіозаписну компанію під назвою Arkadin по суті, і ми в режимі реального часу з'єднуємо всі ці різні рішення. Ідея полягає в тому, щоб потім ми могли вам надіслати електронною поштою окрему програму електронної пошти зі слайдами, якщо, наприклад, WebEx зазнав аварії, ми всім вам зателефонували, ми надішлемо вам слайди та просто пройдемо її більше або менше без середовищ WebEx. Отже, спосіб вирішити подібні проблеми, але ці проблеми є скрізь.
Але, хмари мають багато переваг. Очевидно, що це низький бар'єр на шляху до входу, ви можете подивитися на плакат дочірніх хмарних обчислень є salesforce.com звичайно, що якраз зробило революцію в бізнесі, зокрема автоматизації продажів, очевидно. Але тоді у вас є такі речі, як Marketo, iContact, постійний контакт і Sailthru, і, на жаль, мило, з точки зору маркетингу та автоматизації продажів, є багато інструментів, але це ще не все є. HR добирає його до всієї гри хмари, аналітика - у хмарній грі. Подивіться на ту маловідому компанію Amazon Web Services, що вони роблять із хмарними обчисленнями - це просто величезна кількість. І я почув прекрасну цитату днями від хлопця, з яким ми багато працюємо з Девідом, який зараз закінчився в Cisco, як фактично, компанії, яка придбала WebEx. Не впевнені, що вони вклали стільки, скільки я хотів би мати у WebEx, але це насправді не моє рішення, чи не так? Але, він сьогодні у Cisco, і у нього була дуже кумедна, просто жалюгідна цитата, і це - "немає однієї хмари, є багато хмар", і це точно так. Там багато-багато хмар. Насправді, кожен постачальник хмар - це своя хмара. Отож, одним із викликів цих днів є підключення хмари, правда? Якщо ви продавець, чи не добре було б, наприклад, підключитися безпосередньо до iContact та постійного контакту та до LinkedIn, а може бути, до Twitter та інших середовищ, інші хмари там просто зафіксували бізнес-рішення, які мають для вас сенс. і ваша компанія.
Тож слід пам’ятати про деякі проблеми, але хмара тут залишається. Тільки знайте, що з цього приводу на місці може залишитися місцеве програмне забезпечення. Отже, що ми маємо з’ясувати на підприємстві чи будь-якому навіть малому та середньому бізнесі, як ти визначаєш свою архітектуру та підтримуєш її таким чином, щоб ти міг використовувати хмару, не створюючи гіганта в іншому місці, що не знаходиться під твоїм контролем? Отже, очевидно, вся галузь зберігання даних склалася навколо необхідності консолідації критичної інформації для того, щоб проаналізувати цю інформацію та прийняти кращі рішення.
Ну, а тепер Amazon Web Services має Redshift. Це одна з найбільших веб-трансляцій, яку ми коли-небудь робили з Redshift. Це досить велика справа. Вони змінюють динаміку, змінюють структуру ціноутворення. Ви можете спостерігати, як ваші ціни знижуються на традиційне ліцензування корпоративного програмного забезпечення частково через хмарні обчислення, а частково через те, що ці люди там знижують ціну, чинять тиск на ціну. Отже, це хороша новина для кінцевих користувачів. Про те, що потрібно пам’ятати, безумовно, для тих, хто намагається використовувати деякі з цих технологій. Отже, про це потрібно пам’ятати, і про це ми сьогодні поговоримо у шоу.
Отже, аналітик доктор Робін Блор стане нашим першим аналітиком за цей день. Тож я піду вперед і натискаю його перший слайд і передаю йому ключі. Робін, я думаю, ти десь тут, там ти. І з цим я збираюся його подати, а підлога твоя!
Доктор Робін Блор: Гаразд, Ерік. Дякую за вступ Я натрапив… пару днів тому я натрапив на опитування споживачів, насправді, яке задало питання - чи вважаєте ви, що бурхлива погода заважає хмарним обчисленням? І більше 50 відсотків з них сказали "так". Я просто думав, що дам вам знати, що це не так, якщо ви один з тих, хто вірить у це. І тоді, це трохи схоже на те, щоб повірити, що, знаєте, коли у вас на телебаченні сніг, це тому, що зовні сніг.
Хмара, ви знаєте, одна з речей - це свого роду, знаєте, важлива, якщо вам подобається, проста деталь хмари полягає в тому, що хмара є так чи інакше центром обробки даних, або будь-яка конкретна хмарна служба є центр обробки даних. Єдине - це інший центр обробки даних, ніж традиційна хмара. Отже, я збирався поговорити про хмару, щоб у якості резервного копіювання детальніше розглянути питання про використання хмари, оскільки немає сенсу покривати ту саму землю.
Отже, перший вид, який я хотів би зробити, це те, що хмара - це послуга, знаєте? І одна з речей, що насправді відбувається через хмарні обчислення, - це те, що … ну, я називаю загибель брендів, ціла серія брендів програмного забезпечення мала величезну силу і продовжує мати повноваження в корпоративних обчисленнях. Як тільки ви потрапите до хмари, вони вже не мають великої потужності, знаєте? Купуючи хмарний сервіс, ви дбаєте про додаток, звичайно, ви дбаєте про рівень сервісу, який вам надасть хмара, ви не хочете, щоб хмарна служба часто виходила з ладу, ви піклуєтесь про витрати на використання, і ви дбаєте про них речі, тому що це сервіс, але те, що вас більше не хвилює, - це те, що вам не байдуче обладнання, на якому він працює, вам не байдуже, що таке мережева технологія, вам не байдуже, яка операційна система це працює, вам не байдуже, що таке файлові системи, вам навіть не байдуже, що таке база даних, і це фактично використовується будь-якими службами бази даних поза хмарою, знаєте? І вплив цього певним чином полягає в тому, що хмара - це дуже багато брендів програмного забезпечення, що не мають реальної цінності в хмарі, тому що, знаєте, ви входите в хмару так чи інакше для чогось, що є послугою, а вже не продукт. Отже, я подумав, що можу зробити пару слайдів, щоб не використовувати хмару, знаєте, і це все, якщо вам подобається, ви знаєте, криваві прості, очевидні причини, але хтось повинен був їх констатувати, тож я думав, що буду.
Отже, причини мені не … не користуватися хмарою - якщо вони не можуть надати потрібний тип даних та управління процесами, ви знаєте, це просто не відповідає вашим критеріям. Якщо вони не можуть дати тобі бажану продуктивність, це не відповідає критеріям. Якщо хмара надає вам гнучкість з точки зору того, як ви можете переміщати речі, то це не відповідає критеріям. Це просто очевидні причини, чому конкретні хмарні сервіси не підійдуть дуже багато людей, окрім як корпоративних обчислень.
Ви можете цього не зробити, тому що ви можете зробити це дешевше. Хмара не завжди є найдешевшим варіантом. Деякі люди, здається, думають, оскільки це часто недорогий варіант, він завжди буде дешевший, не завжди дешевший. А інша річ, що якщо ви берете заявку з хмари, вона не добре поєднується з тим, що ви робите, то ви, мабуть, не збираєтеся йти вперед і це, знаєте, причини відвернутися. .
Ось причини прийняття. Ви знаєте, одна з речей, які ви можете зробити в хмарі, в значній мірі захищена від куль, - це діяльність по прототипуванню. Якщо ви або можете прототипувати у хмарі та реалізовувати у центрі обробки даних, це цілком життєздатно, і це робить величезна кількість людей. Ви можете завантажувати роботу з центру обробки даних з некритичними програмами, тому що, ймовірно, ви зможете знайти якісь хмарні сервіси, які б відповідали вашому рівню обслуговування некритичним. І ви можете завантажувати конкретні програми, такі як salesforce.com, та подібні пропозиції до стандартних програм. У всіх видів є можливість у цій галузі, і поле не є спеціалізованим, і, знаєте, традиційним … все, що є в хмарі, можливо, буде те, з чим ви йдете.
Отже, остання річ, яку я хотів сказати, це справді цікава річ, коли ти насправді шукаєш хмару, один із способів розуміння - це лише економія масштабу. Вся справа в тому, що, ви знаєте, запускаєте центр обробки даних там, і ви збираєтесь зателефонувати до цього центру даних звідкись чи іншого місця і використовувати його, і, отже, краще, краще в основному дешевше, ніж якби ти робиш це сам. Отже, ви знаєте, насправді все стосується економії від масштабу.
Хмарні провайдери вони вибирають розташування центру обробки даних, і найкраще місце для розміщення центру обробки даних знаходиться безпосередньо біля електростанції, а особливо біля недорогої електростанції. Отже, одна електростанція на північ, яка буває гідроелектростанцією чи щось подібне. Це звичайно найдешевше, знаєте? Ви можете знайти центр обробки даних там, і вам стане легше. Найняти людей у таких місцях дешевше, ніж це в центрі Нью-Йорка чи Сан-Франциско. Ви можете стандартизувати весь об'єкт з точки зору кондиціонування повітря та потужності. Це допоможе вам значно заощадити, оскільки це означає, що ви можете роздати цілу будівлю, і саме це роблять усі хмарні оператори. Вони стандартизуються на мережеве обладнання, вони стандартизуються на комп'ютерне обладнання, яке вони використовують, як правило, товари x86 дошки, часто вони збирають їх самі. Отже, деякі навіть насправді все будують. Вони використовуватимуть програмне забезпечення Amazon, яке зможуть, оскільки насправді це не означає витрат на його прийняття. Вони стандартизуються у всьому програмному забезпеченні. Отже, вони ніколи нічого не оновлюватимуть, окрім як оновлювати все одразу. Вони організують підтримку. Таким чином, вони будуть надавати підтримку безлічі різних постачальників, які просто мають власну службу підтримки. Вони матимуть можливість масштабування та масштабування в тому сенсі, що вони працюватимуть більше, ніж ви коли-небудь будете використовувати такий вид послуг, і вони будуть стежити за їх використанням так, як більшість центрів обробки даних не можуть, оскільки вони є типом роботи лише одного стандартизованого сервісу, але в більшості центрів обробки даних працює ціла низка речей. І саме в цьому полягає хмара, і це певним чином може визначити, цікавить вас це, чи це не для якогось конкретного додатка. Отже, ви знаєте, моє таке грубе правило полягає в тому, що там, де можлива економія масштабу, хмара рано чи пізно перейде на себе. Але шлях до інновацій та гнучкості та дуже конкретних речей, які ви йдете самі, насправді не може. Хмара завжди буде другою кращою.
Добре. Дозвольте повернути його Еріку або Жилберту.
Ерік Кавана: Гаразд, Гілберте, я дам тобі ключі до WebEx. Режим очікування. Просто натисніть будь-де на цьому слайді та скористайтеся стрілкою вниз на клавіатурі.
Гілберт Ван Кутсем: Я думаю, що я контролюю.
Ерік Кавана: Ви керуєте.
Гілберт Ван Кутсем: Добре. Ось і ми. Імператив хмари - небо є межею, це міська легенда, чи що ви думаєте про це? Це лише кілька переговорів та речей, які слід розглянути.
По-перше, з фронту "що" ви знаєте, як ми всі знаємо, я не думаю, що хтось у цьому сумнівається. SaaS-ification тут залишається, оскільки програмне забезпечення насправді ніколи не вмирає, воно просто переміщується до хмари, правда? Я думаю, я говорив про це раніше в попередній редакції цього. О ні, або Ерік сказав це для мене в попередньому виданні. І я думаю, що очевидною причиною, і це певною мірою повертається до Робіна, є те, що на корпоративному боці речей корпоративна хронологія досить проста. ШМО завжди потребує всього цього, і йому це потрібно зараз. Отже, він весь час продається на ринок. Так сумно, що це хороший привід для цього в чомусь для нього. CIO, однак, трохи нервує SaaS та хмари, тому що, знаєте, вся проблема еластичності означає, що те, що піднімається, також повинно знизитися. Ви повинні бути готові до масштабування, але і до масштабу назад. Отже, він трохи знервований з цього приводу. Фінансовий директор не нервує, не більше, ніж зазвичай, але він каже: "Гей, це … наскільки це поверне нас назад?" Знаєте, це сумнозвісні капітальні витрати порівняно з дискусією OPEX. Це досить старе, але це, дуже відомо, дуже важливо в цьому світі. І тоді, нарешті, але не менш важливо, це генеральний директор. Він іде так: "О! Пом'якшення ризику! Хлопці, ви всі раді, але ми готові до цього?" Тому що ризик - це те, про що він думає.
Отже, який ризик? Всього кілька думок, правда? Ми маємо справу тут з мислительським лідерством, але в незавершеному шляху, оскільки це все досить нові речі, всі досить недавні речі. Насправді, у нас дуже багато точок даних, якщо ви подумаєте про це. І так, ми також, зі сторони ризику, маємо мати справу з бортом, знаєте, люди, що підписують угоди, йдуть на кшталт: "Так, це те, що ми хочемо, шлях", вони підписуються, але потім цього недостатньо. Ви знаєте, ви повинні перебувати на борту людей і що, пам’ятаєте фільми? Ще в перекладі це трохи, ви знаєте, про що на борту йдеться. І тоді також, як Робін щойно сказав, ви знаєте, он-прем не обов'язково йде відразу. Отже, ви повинні інтегрувати обидва світи. Це гібридний світ. І так, як ви це зробите? Це 80-20, правило 80-20 Парето, це гаразд? Це досить добре? І тоді сміття в / сміття виходить, коли ви підключаєте системи. Чи це нормально? Це довговічно? Тому що, знаєте, ви збираєтеся мігрувати, чи збираєтесь зіставити своє підприємство на кореневу систему, як ви це зробите? І тоді остання, що, на мою думку, є надзвичайно важливою, - це багатосторонні архітектури, це означає, що конфіденційність даних щодо ваших власних даних, іноді це називається "володіти власними даними", стає дуже важливою, ви знаєте? Сто людей, що використовують ту саму систему, одна база даних сидить нижче системи, хто побачить мої дані? Тільки я, правда? Ви абсолютно впевнені в цьому? Конфіденційність даних, безпека даних допомагають експертам. Якщо ви CIO, він повертає "Я" в CIO, тому що зараз ви відповідаєте за інформацію. Це досить цікаво, якщо ви CIO.
Отже, давайте поговоримо трохи про "чому". Отже, я думаю, що стратегічний намір усього цього дуже-дуже простий. Якщо ви абонент, існує ринковий тиск. Якщо ви є постачальником, існує конкурентний тиск. Якщо у вас є однолітки, спостерігається тиск однолітків. Якщо ви абонент, це просто психологія ринку. Усі хочуть перейти до хмари, SaaS або як би ви цього не назвали, хмара SaaS, нам всім потрібно і хочемо туди поїхати. А причина, як правило, фінансова. Це очевидна причина, але якщо ви подумаєте про фінансовий аспект, ви потрапляєте в те, що я називаю парадокс законопроекту проти бюджету. Чи збираєтесь ви підписатись на системи, які ви можете їсти, 50 доларів США, 500 доларів на місяць чи щось подібне, чи мрієте про використання, яке базується на тому, щоб ви платили лише за те, що реально використовуєте? І так, як це працює, на основі використання, на основі споживання? Ви збираєтеся заміряти всі ці речі? Це, мабуть, не станеться одразу. Отже, у вас вийде гібридний механізм, а саме я плачу 200 на місяць, а може, зрідка і 500, бо мені доведеться платити за додаткове споживання. Retainer Plus, це, мабуть, піде на мій погляд.
Але є також те, що я називаю прихованим наміром на широкому фронті, і я вважаю, що, знаєте, це абсолютно реально. Це зміна контролю, це CIO проти CMO, зміна потужності або боротьба за владу між CMO, "я хочу все це і я хочу це зараз", і CIO, який каже: "Гей, це все про дані, ви знаєте? Раніше я працював 20 років тому, це було все про апаратні системи. Десять років тому було все про додатки. Сьогодні це все про дані. А оскільки я - CIO - інформація - це все я. Я контролюю ". Таким чином, це свого роду зміна влади або боротьба за владу, я вважаю, що зараз триває між цими двома, Комісією законодавства та СІО.
Отже, врешті-решт, це все настільки молодо, що ніхто насправді не знає, чи ми в середовищі інноваторів, чи в середовищі раннього прийняття. Я вважаю, що ми перебуваємо в середовищі раннього прийняття, а не в ранній більшості, просто в ранніх усиновителях, але, знаєте, на півдорозі. І так, ви знаєте, для замовника, кінцевого споживача, абонента, це стосується того, щоб почати голову, оскільки CMO хоче почати роботу, правда? І так, важливо не закінчувати те, що ми називаємо зменшенням прибутку. Обмежувальний початок може призвести до зменшення віддачі. Ось чому надзвичайно важливо, ви знаєте, знайти, довіряти сторонам, які можуть переконатися, що єдиний момент невдачі не є проблемою та дотримання безпеки даних. Отже, це потребує зовсім небагато управління змінами. І ось, врешті-решт - майже зроблено, це останній слайд - як ми будемо це робити? Як перехід до хмари, перехід до SaaS буде, знаєте, безпроблемним та легким? Ну, роблячи дві речі: звертати увагу - резервування - дійсно важливе, а на борту - ще важливіше.
Ерік Кавана: Добре …
Гілберт Ван Кутсем: І в цьому випадку небо є межею. Дякую.
Ерік Кавана: Так. Це було чудово. Мені сподобалися дуже провокаційні ідеї, мені подобається те, як ти ніби все це зламав. Я думаю, що це має багато сенсу. І давайте вперед і натиснемо перший слайд Ашиша, і я передамо вам ключі WebEx, Ашиш. Гаразд, продовжуй. Просто натисніть будь-де на цьому слайді та скористайтеся стрілкою вниз на клавіатурі. Ось так.
Ashish Suchoo: Добре. Спасибі, Еріку. Привіт, люди, це Ашиш, і я розповім вам про Qubole. Отже, для початку Qubole, по суті, він забезпечує великі дані як платформу обслуговування. Це хмарна платформа, розміщена в хмарі Амазонки та хмарі Google, і ми пропонуємо такі технології, як Hadoop, Hive, Presto та купа інших, про які я розповім, все під ключ, щоб наші клієнти могли по суті вийти з вся плутанина в світі інфраструктури великих даних або вийти з фактичного запуску цієї інфраструктури і дійсно більше зосереджуватися на своїх даних та перетвореннях, які вони хочуть зробити на своїх даних. Отже, ось про що йдеться у Qubole.
З точки зору відчутних переваг, один із способів думати про Qubole, ви знаєте, звичайно, це платформа під ключ, платформа самообслуговування для аналізу великих даних та інтеграції великих даних, побудована навколо Hadoop, але більш принципово, що це робить, це ви знайте, що для всіх великих механізмів передачі даних, таких як Hadoop, Hive, Presto, Spark, Chartly і так далі, і так далі, це приносить усі переваги хмари для цих двигунів великих даних і деякі ключові маніфести, які вона отримує від Ви розумієте, що хмара робить інфраструктуру адаптивною і, адаптуючись, я маю на увазі як гнучку, так і гнучку до робочих навантажень, що працюють на будь-якому з цих двигунів, а також робить ці двигуни набагато більш самообслуговуючими та співпрацюючими в тому сенсі, знаєте, Qubole пропонує інтерфейси, де ви можете використовувати ці конкретні технології не лише для своєї розробки або, знаєте, завдання, орієнтовані на розробників, але навіть ваші інші аналітики даних також можуть почати отримувати переваги цих технологій для самообслуговування. інтерфейс.
Ми отримуємо багато, ви знаєте, стосується саме цього, ви знаєте, вебінару, ви знаєте, це одна з наших перспектив щодо того, які переваги хмари, які Qubole приносить великим даним. Отже, якщо ви просто порівняєте те, як ви запускаєте, скажімо, Hadoop, і дозвольте йому працювати завантаженням в попередній настройці, в налаштуваннях на попередній план, ви завжди думаєте про статичні кластери, знаєте, ви виправляєте кластери, ви можете розмістити їх до максимального використання, і ви зберігаєте їх там, і тоді, якщо вам доведеться їх змінити, вам доведеться пройти цілий процес закупівель, розгортання, тестування тощо і так далі. Qubole змінює те, що, створюючи кластери повністю на вимогу, наші кластери є повністю еластичними, ми використовуємо об’єкти, що зберігаються з хмари, для фактичного зберігання даних, і кластери з’являються, і, знаєте, вони з'являються на основі попиту, що створюється користувачів, і вони відходять, коли немає попиту. Таким чином, це робить та інфраструктуру набагато гнучкішою, гнучкішою та пристосувальною до ваших навантажень.
Ще один приклад гнучкості - це, знаєте, сьогодні ви, можливо, створили тут свої статичні кластери, маючи на увазі певне навантаження, і якщо ваші навантаження змінюються, а тепер ваша інфраструктура потребує оновлення, можливо, вам потрібно більше пам’яті на ваших машинах і подібні речі. Знову ж таки, ви знаєте, наприклад, що це робиться на хмарі через Qubole, це робить це просто. Ви завжди можете взяти в оренду нові, різні типи машин і, знаєте, отримати кластери, 100-вузлові кластери та запуститись за пару хвилин, на відміну від тижнів, які вам довелося чекати на попередньому Hadoop.
Інша ключова річ, у якій Qubole відрізняє себе від on-prem, це те, що Qubole є, по суті, як послуга, що пропонує, тому всі інструменти та інфраструктура, необхідні вам для інтеграції послуги, вам не доведеться … де б не було, ви знаєте, це перш за все, ви берете програмне забезпечення, ви повинні запустити його самостійно, ви повинні інтегрувати його самостійно і робити всі ці переваги, всі переваги моделі SaaS є підказкою, ви знаєте, як Qubole пропонує великі дані на відміну від запуску Hadoop on-prem власноруч.
Цей слайд загалом охоплює нашу архітектуру. Ми, звичайно, базуючись на хмарі, ми зберігаємо наші дані про об’єкти у хмарі, хмара Google та Google Compute Engine або веб-сервіси Amazon. Ми беремо всі проекти екосистеми Hadoop і навколо цього, ми розробили ключовий ІР навколо автоматичного масштабування та самоврядування, ми зробили багато оптимізацій хмари, щоб ці компоненти технологій справді добре працювали у хмарі, оскільки, знаєте, хмарна інфраструктура сильно відрізняється від просто запущених речей на голому металі та цілого ряду роз'ємів для передачі даних, що дозволяють переміщувати дані та виходити з цієї платформи. Отже, це порівнює хмарну платформу, і це дає змогу, що, знаєте, це ключова … ключова особливість у тому, як зробити все самообслуговування, щоб вам не довелося мати сильну … У мене не буде дуже великий оперативний слід під час цього, але ми пов'язуємо це разом із нашою робочою версією даних, чи це інструменти для аналітиків, чи це інструменти управління даними, чи це інструменти шаблонування тощо, і так далі, щоб ви може принести переваги цієї технології не тільки розробникам, але й іншим бізнес-користувачам і підприємству. І звичайно, ми також прив'язуємо цю хмарну платформу до інструментів, якими ви вже користуєтесь, чи це, знаєте, засоби використання або просто Tableau, чи вони використовують, відомо, більше типів даних для зберігання даних, таких як Redshift та так далі і так далі.
Сьогодні сервіс працює в досить великих масштабах, ми обробляємо фактично близько 40 петабайтів даних щомісяця в нашій клієнтській базі. Наші кластери різняться за розмірами від 10-вузлових кластерів до 1500-вузлових кластерів, і, ви знаєте, з точки зору діапазону масштабів, який ми можемо обробити, і за великим рахунком, наскільки мені відомо, ми запускаємо певні найбільші кластери на хмарі, що стосується Hadoop, і ми обробляємо приблизно 250 000 віртуальних машин за один місяць у наших кластерах. Пам’ятайте, наша модель - це кластери на вимогу, що має величезні переваги з точки зору зменшення ваших робочих навантажень, а також покращення ваших тощо і так далі.
Нарешті, ви знаєте, один із наших, ви знаєте, це лише вибірка того, як Qubole був трансформаційним для різних компаній. є прикладом нашого клієнта. Вони вже були в хмарі, наприклад, вони працювали над хмарою Elastic MapReduce, і використання даних там було досить обмеженим. У них буде близько 30-ти випадкових користувачів, які могли б використовувати цю технологію. Завдяки Qubole вони змогли розширити це на більш ніж 200 випадкових користувачів у компанії, які бачили розширення випадків використання великих даних, і це дійсно доведено, знаєте, що ми називаємо визначенням спритної платформи великих даних, і це це стало дійсно важливим для багатьох навантажень на аналітику.
Отже, щоб закрити, ви знаєте, це був короткий буквар на Qubole. По суті, наше бачення полягає в тому, як ми робимо підприємства набагато більш спритними навколо великих даних, і, по суті, ми використовуємо переваги хмари і привносимо їх на використання великих технологій передачі даних навколо Hadoop, щоб наші клієнти могли використовувати ці переваги спритності та тих переваг гнучкості та тих переваг характеру самообслуговування у хмарі, щоб стати настільки ефективнішими для їх потреб у даних. Тож я зупинюсь там і поверну Еріку.
Ерік Кавана: Добре. Це звучить чудово, і тепер я передаю його Майку Міллеру з Cloudant. Майк, я передаю вам ключі зараз. Просто натисніть на слайд, ось ви йдете. Відняти її.
Майк Міллер: Схоже, у мене є ключі. Отже, я прошу вибачення. Я програв … Я думаю, що забув відправити деякі шрифти зі своєю презентацією. Тож, сподіваємось, ти зможеш проглянути повз це і уявити, що це красиво. Але, так, це весело. У мене тут довгий список, провокаційні речі, які я чув, що я записав, що я хочу повернутися до вас на панелі. Тож я спробую швидко пройти через це.
Отже, я розпочну з Cloudant. Cloudant - це база даних як послуга, наш хмарний постачальник, і фактично я навіть не маю нового логотипу. Ми були придбані IBM не так давно. Отже, ми … Я говорю про наш сервіс і особливо зосереджуюсь на намаганні зробити наших користувачів та клієнтів спритними досить іншим чином, ніж попередній спікер.
Cloudant надає базу даних як службу та інші послуги, пов’язані з даними для людей, які створюють додатки. Отже, ми взаємодіємо безпосередньо з розробниками і зосереджуємось на оперативних даних або даних OLTP на відміну від аналітики, яку ми чули від Ashish раніше. І справа в тому, що це дійсно ціле значення Cloudant, яке може бути розбито на те, щоб допомогти нашим користувачам робити більше, а значить, будувати більше додатків, рости більше і спати більше. Я розповім про них трохи детальніше, але загальна ідея тут полягає в тому, що якщо ви користувач, знаєте, ви перебуваєте в бізнес-підприємстві, ви будуєте нову програму, додаєте функцію до існуючої програми чи Інтернету мобільний запуск, ви повинні зосередитися на своїй основній компетенції. А раніше, можливо, до десяти років тому ІТ повинен був стати відмінним, знаєте, конкуренція, вибачте, конкурентоспроможний збиток, навіть запуск баз даних, щоб бути конкурентною перевагою. З полегшенням, що ті дні закінчилися! І так, спосіб, яким ми дійсно намагаємось працювати з нашими користувачами, - це заохочувати їх до використання складених послуг, модульних, багаторазових, сумісних з ідеєю, що скорочує час на маркетинг, збільшує масштабованість. І загальна ідея тут полягає в тому, що хмара - це не просто, знаєте, щось нове, що підштовхується до користувачів, це насправді ринок … це еволюція ринку, оскільки спосіб створення людей програм, споживання програм, пристроїв, на яких вони працюють. а масштаб даних досить радикально змінюється за останні 5-10 років. Це дійсно наголошено на існуючій архітектурі прикладних програм для створення програм, а також просто на роботі з цими даними та аналітиками в режимі офлайн. І так, це відкриває цілий потік можливостей.
Отже, Cloudant - це розподілена база даних як послуга, і, я вважаю, вона була унікальною, коли вона створювала мобільну стратегію з самого початку, і я розповім про це докладно, але ідея полягає в тому, щоб писати додатки зараз, ви не пишете лише для однієї платформи, правда? Ви пишете про те, що я можу запустити петабайтну шкалу в хмарі, вона також повинна мати можливість безперебійно працювати на робочому столі або в браузері, і все більше і більше ми бачимо речі, нам потрібно працювати на мобільному пристрої або напівз'єднаний пристрій, або носячий пристрій, або щось, що ми називаємо IOT. І так, я думаю, що, ви знаєте, програми, які можуть добре працювати і використовувати ці різні клієнти, є надзвичайно конкурентоспроможними на ринку, і те, що ми намагаємося зробити, це спростити людям єдиний API в єдиній моделі програмування, писати, обробляти дані на всіх тих пристроях, які мають різний масштаб. The interesting thing is, you know, initial uptake in web and mobile, this is where we saw our big subtraction, but even now before the acquisition, we are seeing larger and larger number of enterprise users even in things as what I say as conservative as fidelity investments, right, working with a virtual building, a virtual safe deposit box. So, I think that this market is actually taken off much faster than even we had expected.
Let's talk about cloud and a little bit more and then turn it over. The idea here is that we really make it easier for you to build more and use a service like Cloudant to store the database state of your application and then move that to your different devices and keep things in sync and start contrast on how you build application, traditional stack or you have to buy servers like we heard about before, where you have to provision those and install license things. With Cloudant, we try to make easy. All the data that you will need, all the search services, database, etc. for your application can be acquired by signing up and getting a single endpoint URL and then starting to use that URL. The idea being that, that is a service that uses multiple indexes, some multiple technologies underneath, some proprietary and many open source, but we use them together in a way that the end developer or product team needs to build something. And so, database analytics, very different than they did it in inception where you would have, you know, rows and columns to store business ledgers, now we need to start JSON documents that generally happens over HTTP or using existing open-source APIs and then finally, we give you the things that database should do like a primary index and secondary indexes for, you know, retrieval and LTT and then driving application logic. But in addition, there is a wide range of things like search, geo-special and replication between devices that are very important. So, that's all provided underneath our API.
But, the really distinguishing thing that allows our users to grow and, for instance, why Samsung was one of our earliest and biggest customers is that, you know, Cloudant now is underneath cluster. Each cluster shares enough architecture of three to hundreds of nodes, but we run those in over 35 data centers now globally so that there is always a place for you to store your data within a millisecond of any other cloud provider or most existing data centers. So, one of the big early things that we are challenging in the cloud as well, is how do I split a hybrid architecture for my application service maybe here and my database servers maybe someplace else that will never work. They have to be on the same machine or in the same place. Well, the reality now is that by cobbling together different cloud providers, and this is something that we still do as an IBM company, you can make sure that your database is always within a millisecond of any other place and we take care of the peering agreements and just take down with the cost off the table, something that we worry about. So, Cloudant is really a database as a service, but you can think of it more like a CDN like for your database for data that changes, you know, on millisecond time scale.
And really, finally, I think the major selling point is if you build an application that's successful, you have to decide as an organization whether or not if you want to then grow the 24x7, 365 globally distributed, you know, operation team that it takes to run that at the large scale to whether that's something that now is commoditized as well. And so we focus very heavily on helping on-board new users and new customers and help them make the jump to the cloud and build architectures that use cloud analysts and works everything in a very coherent and scalable way so that is the end, you know, our users focus on building applications and not on surviving their own success.
And with that, I will just say thanks, skipped over some slides that were skipped and I will turn it back over to Lawrence.
Eric Kavanagh: That is fantastic. So, Lawrence, let me hand you the keys to the WebEx here. Just give me one second. There you are. Keys being transferred. Just click on that slide anywhere and use the down arrow.
Lawrence Schwartz: Great! Well, thank you for the handover and, you know, thanks to all the presenters today. Nice way to set everything up and there will be a lot of things to talk about it as I get through with the presentation here. So, again, I am Lawrence Schwartz. I run marketing over at Attunity and, you know, want to talk about some of the issues that we see and then some of the challenges in the space that we are in.
So, a quick overview and introduction to Attunity as a company and who we are. We focus on moving data. So, we talk about moving any type of data anytime, anywhere and enabling that for users. We are a public company based out of the Boston area, or near Boston, and when we talk about the cloud, we have some great relationships, we are part of the AWS network, a big data integration partner, and we have been close to them since the launch of their Redshift, even working with them before that. We have gotten some nice recognition for the work that we have done and as a company, we are in over 2000 places use Attunity, and we are in half of the Fortune 100 companies. So, we got some good experiences.
As you can see on kinda of the bottom of the slide here, a big issue is you've got data that's generated from all different types of sources these days from traditional, you know, CRM systems, all different places on the Internet, all the different places where data could start and then it has to go to places to be analyzed, to work with and to be looked at and we spoke if, you know, getting the data, you know, where it needs to be. So, I am gonna talk about our solutions that we do specifically on the cloud and when you think about that, often times the data, we have somewhere on-premise. So, besides having relationships with places like Amazon, we have very close working relationships with places like Teradata, Oracle, and Microsoft, all the places where data traditionally existed on-premise.
So, when you think about this, you know, and I think it was Eric who, you know, talked about on-boarding is the key to the whole process, right? I have been thinking about the issues to getting data on a system. Now, we are just some of the bottlenecks that exist today and when you look at the people moving data into a data warehouse or a database and to the cloud, we can see a lot of time is spent on what's called the ETL process, the extraction, transformation and loading of the data from where it resides to where it needs to go. If you think about getting the value on the data, that's not where you want to be spending your time and efforts, that's not the most productive area for a data scientist. And the flipside to that is this - very few people who are very satisfied with that process. It's no less than 20 percent. We really find that to be a big process. So, there is the real kind of painpoint bottleneck, if you will, in getting to the cloud and doing that type of on-boarding that people need to do and there's even, you know, real performance issues, you know, you could look at how do you get stuff into the cloud and if you want to get, you know, a couple of terabytes into the cloud, you could certainly ship it to the cloud and there are still places that do that with larger data sets, or a lot of the traditional methods, just don't have the performance to get their to do that. So, it's a real, you know, painpoint in the marketplace as people think about how do they get and how do they move onto the cloud.
So, if we step back in and look at what that means or why that's there and, you know, how this has come about, you know, both Eric and Gilbert talked about the fact that, you know, the data that's on there today, that exists today, you know, on-prem is here to stay, you know, cloud is here to stay. So, that integration becomes all the more important and often times, people fall back on the tools that they have to move over data. Again, there is a lot of ETL or traditional tools out there to kinda move data over in batches, but there's a lot of issues with that. People find that traditional ways of moving data are very time and resource intensive to set up. They often require a lot of scripting, even if they are autonomous in some way, a lot of people, a lot of manpower. There's so many sources and targets, particularly on-premise today to move it into the cloud, you know, all the systems I mentioned earlier, Oracle, Microsoft, Teradata, some managing that whole part of it. And then, you know, looking at the performance as it moves over, being able to have the tools to make sure everything is building quickly, there is a lot of thought systems that exist today aren't well built for that.
And then lastly, a lot of the way people think about moving data is kind of done in the batch process and if you are thinking about trying to do more in real time, that's not the most effective way, kind of using stale data that's not interesting to the organization. So, when you look at what Attunity does in this stage and how we think about it is, it's a different architecture that we are focused on, we really built this from the ground up and thought about when you have to go from Pentaho open-source database out to the cloud, how do you make sure that it's very easy and straightforward to do? So, that requires rethinking, how you do the monitoring and kind of set up for. It's making the whole thing just kind of a couple of clicks to get started. It's really thinking about the movement and optimizing the performance over the channel and working with just a wide variety of platforms because a lot of big organizations kinda have the best degree approach and a lot of different types of databases or data warehouses are ready in their environment. So, you have to think about it differently. You can't just do an extract, you know, dump the data out to some sort of information loaded somewhere. You have to kinda think about the architecture change, how you do the processing, do it more in memory and focus on a more performance version.
So, what does that mean and what does that look like? So, one key tenent to get to the problem with the cloud is, that things have to be easier to set up. You know, that screen there, it's just some screenshots from how we do it, but it's, you know, 1, 2, 3, kinda pick your source and target, pick what you want to do, you want to do one time CDC and then just go. It needs to be no harder than that, you know? I know we just, you know, saw the presentation from Mike and he talked about how easy it was for people to get started with Cloudant. It's the same type of thing, you have to deal with, kinda get going in a few steps otherwise you will start losing the value of it. When you think about the monitoring and control of it, there are some great companies out there, I know you're familiar with, like Tableau and others, who have done a great job in visualizing the end product of data and how to do it. But, you know, being able to visualize the movement process, the management or where's the data set on-premise, in the clouds and moving over, is there a lag, there is a vacancy. Having that viewpoint is critical and that's an important part of moving forward.
Another aspect that becomes important is the performance. You can't just rely on the standard FTP kinda two-way protocol that people have been using for years. As you move more and more data over, you have to have optimized, a file-channel protocol that is geared more towards, you know, one-directional movement most of the time after we think about how you break up tables and ship them out and move them over and you have to give people the flexibility to do that, otherwise you can't get it there in time and if you do that differently, think about it differently, you can get a 10x performance, but you have to rethink the technology.
And then lastly, as I mentioned earlier, you know, you have got a lot different places that databases exist today. So, you got to be able to work with all those and offer the widest kind of amount of support so that people can get onto the cloud. So, what does that mean for users and, you know, and those who are out there who wanted, two kind of quick cases of how people had challenges getting to the cloud, see the value, but then are able to do that if they have the right toolset.
So, one company that we work with, Etix, they do online ticketing, major provider in this space and I know Robin talked about data center offload is kind of a key in this case for the cloud. This is exactly what they are trying to do. They were trying to load and sync their data from Oracle on-premise to Redshift and do that in a timely fashion. And the interesting thing is, you know, go back to what Gilbert said, you know, it's really tough about on-boarding being an issue. They could see the intrinsic value of Redshift, they could see the cost savings, they could see all the advanced analytics that they quickly start doing that they continue for, they knew that value, but there was a roadblock to getting there. In this case, they looked at it and said, "Well, I see the value of Redshift, but it's gonna take them, you know, three months, development effort and time and, you know, maybe hiring the DBA and doing all this extra work to get there." So, there is a real block in the path to do it. Once you have the right toolset to do that, the right data integration capability to do that, they were able to go down from, you know, months of planning to literally just get going in minutes, and that's again lowering that barrier of getting people onto the cloud, we need to have the right capabilities to deliver on the promise.
The last, you know, slide I have here, and kind of another use case is, you know, we've worked with other companies, Philips, you know, well known in many spaces, we work with their health-care division and again, they were trying to go from an on-premise source over to Redshift, in this case SQL Server, and they knew the value, they knew all the analytics, they could do on it and they had done some testing on it, but they saw that without having the right tools, this is something that was gonna take them, you know, weeks and they had been spending actually weeks spinning their wheels and trying to get things moved over once they had the right tools that simplify, get it moved over quickly, they were able to go down and start loading in less than an hour, you know, over 30 million records. So, the real time went from couple of months to about two hours for them. And then they were able to do the things that they wanted to do. They didn't have to focus on the data loading, they could focus on the operational support. They got a much better matrix for all these care, cost and operations. So, you think about the whole challenge, you know, we design that spaces, enabling the data movement and now more than ever with the cloud when you think of it being kind of a remote place to pick your data, you know, this becomes an area that, you know, more and more people need to solve, to take advantage of what's out there. So, that's an overview of what we do and with that I will pass it back to you, Eric.
Eric Kavanagh: Okay. That sounds great. We've got a good amount of time here. We'll go a bit long to get to some of your good questions, folks. So, feel free to send your questions and I've got a few questions myself.
Lawrence, I guess I will start off with you. You guys have been in this space of kinda supercharging the movement of data for a while and you have been watching the cloud very carefully and I've really been kinda surprised at how long it's taken major enterprises, Fortune 1000 companies to fully embrace cloud. I mean, there are, of course, pockets of severe interests, let's call it, in large organizations, but as a general rule, there's been a bit of a reluctance that is only starting to wane in the last year or so, at least from my perspective, but what do you see out there in terms of cloud adoption and readiness of the enterprise to use cloud computing?
Lawrence Schwartz: Sure, I think you are right. It has been a significant change and it's certainly taken time, you know, they have that joke about, you know, that successful - overnight sensation - or really overnight success, that really takes years in the making, and that's been true for the cloud, right? It's… you have seen that kick in the last year, but it's due to all the hard work of a lot of players like Amazon who have been doing this for years, you know, to get the service adopted, the kind of, you know, prove the metal and there's, you know, failures and problems to give the diversity and flexibility that they have, that's something that Redshift offers. So, I think the maturity has gotten there, the confidence has gotten there, you know, the… I think it's infiltrated into a lot of companies through small areas, you know, small use cases, small trials, kind of outside that kinda IT control and with that, you know, those successful kind of periphery projects have proven now, there's now more of a willingness to have the conversations about how that spread. And frankly, you know, there's been additional tool that has, you know, have also come out to make these easier, like what we do and, you know, there is that, not just move the data, but show the value of BI in the cloud, and showing that.
So, it's, in one way, it's an overnight or a big uptick in the last year, but a big part of that's been all the hard work of building up to that. So, now we as a company see a lot more adoption. It's as a business for what we do, it's grown quite a bit and the cloud, you know, we do a lot of on-premise to on-premise movement. Now, cloud shows up in a lot of the conversations as, you know, real business cases, real offloading cases out where a year ago was certainly, you know, just more exploratory. Now, they have got real projects to move. So, it's been nice to see that movement.
Eric Kavanagh: Okay. Great. And Mike Miller, you had mentioned that you heard a couple of provocative statements that you wanted to comment on, so, by all means, what do you find interesting or what do you wanna talk about?
Mike Miller: Oh, I think Robin, he made a point, his second-to-last slide contrasting where innovation counts. The cloud will always be second best and I'd love to hear a little bit more about that because in my mind, if I was thinking about building, you know, an application or some new service, it's hard for me to think that my organization, no matter what they are, really wants to go engineer-to-engineer with Google, Amazon, IBM, Microsoft. So, I think maybe I misunderstood his point with that.
Eric Kavanagh: Interesting. Robin, Mike has thrown down the gauntlet. Що ти думаєш?
Dr. Robin Bloor: Well, I mean the point here is that there are a number of situations that I've come across which… where people have gone into the cloud and walked back out and the reason they walked back out was, you know, when it came to actually having emotionally, this was performance driven, but the performance was actually the crux of the application is being built as they couldn't get the low latency they wanted and the cloud was of no use to them. And, you know, the situation was that, you know, actually going into the cloud, even if they were given the ability to measure behavior of the networks for them in the cloud and that workloads in the cloud with something they had absolutely no control over, and because of that, they couldn't create the tailor-made services that they were looking for, and that's a performance edge. I don't think there's anything in terms of, you know, coding that's going to be constricted, what you can do in the cloud. It's service level, it's a constriction… if that's part of where your critical capability is going to be, then the cloud is not going to be able to deliver it.
Mike Miller: Right. The… So, I appreciate that clarification. I do agree, actually, that transparency is one of the big things that here as desire right now from users across many different providers. So, I think you raised a very fair point. When it comes to performance, I think that traditionally it has been very hard to, you know, to go to a cloud provider or any given cloud provider and find exactly the hardware you are looking for, but it will noting kind of the upping the ante in the race to basically free storage between Google and Amazon and other competitors that it is and I think you see the pressure that puts on driving on the cost of SSD, flash, etc. So, I think that's a fun one to watch going forward.
Dr. Robin Bloor: Oh, absolutely correct, you know? I mean, I think there's one of the things that is actually happening is that the second wave is coming on. The first wave was this, you know, this wonderfully tailored services as long as, you know, it's a little bit Henry Ford; you can have it recolor as long as it is black, but, you know, even so, extreme reduction in certain kinds of costs of having the data center. Or, the second thing that happens is, having actually built these huge data centers out, they start these cloud operators, suddenly start discovering things that you can actually do. You couldn't do before because you didn't have the scale. So, there is, I think, a second wave which, to a certain extent, is going to make the cloud even more appealing.
Eric Kavanagh: Okay. Добре. Let me go ahead and bring Ashish as I am gonna go ahead and throw up your architecture slide here. We always love these kind of architecture slides that help people wrap their heads around what's going on. I guess, one thing that just jumps out at me is, of course, YARN. We talked about that on yesterday's briefing. YARN is not a small deal. For those of you who aren't familiar with this concept, it is "yet another resource negotiator." It's, really it's a very interesting development because what happened is in the Hadoop movement, YARN is kind of replacing the engine really, if you will. Our speaker from yesterday will refer to it as the operating system. It's like the new operating system of Hadoop, which of course, consists of the hybrid distributed file system underneath, which is basically storage when you get right down to it, and then MapReduce is what you used to have to use to use HDFS. MapReduce is an absurdly constraining environment in terms of how you get things done. So, the purpose of YARN was to make HDFS much more accessible and make the entire Hadoop ecosystem much more flexible and agile. So, Ashish, I am just gonna ask you in general, since you are mentioning YARN here, I am guessing that you guys are YARN compliant or certified. Can you kinda talk about what… how you see that change in the game for Hadoop and big data?
Ashish Thusoo: Yeah, sure. Абсолютно. So, I think, you know, there are two parts to… So, let me first talk about, you know, why YARN was done and then talk about how that potentially changes the game and what's fundamentally still is the same, you know, where it doesn't change the game. I think that's an important thing to realize also because many times you, you know, you get caught up on this hype of say, this is the new, shiny thing and, you know, everything is going to, you know, all the problems are going to go away and so on and so forth. So, but the primary thing is that, you know, the strength and the weakness of the MapReduce API was that it was a very simple API and essentially, any problem that you could structure around being a sorting problem could be represented in, you know, that API. And some problems are naturally, you know… can naturally be transformed into that and some problems, you know, you sort of, you know, once you have just MapReduce at your disposal then you try to fit into a sorting problem.
So, I think the latter is where YARN plays a role by expanding out those APIs by, you know, being able to compose, you know, maps and reductions and, you know, whole bunch of different types of APIs in terms of how the data can be distributed between these two stages, and so on and so forth. You just made that API that much more richer. So, now you have at your disposal, different ways of solving that same problem, right? So, you just don't have to, you know, be constrained by the API and the problem gets solved one way or the other like, you know, if you are, you know, trying to do an analytics, you know, workload, you can express that in MapReduce, you can express that in YARN. The big difference that happens, that starts to happen is, you know, in terms of, you know, the performance matrix that you start seeing, you know, once you start, say programming to YARN and in some cases, a newer set of things, for example, streaming analysis and so on and so forth starts becoming a reality when you start, you know, doing that, you know, those things in YARN.
So, those are the differences that, you know, that thing has brought into the ecosystem. I think it's much, the richness there is much more on the API side as opposed to it being another resource manager, especially in the cloud context. If you think about it in cloud context, the resource manager is actually your… the VMs that you bring up, you know, you have virt… you know, it's not necessarily… Again, this is a big difference between say, on-prem how you are running Hadoop clusters and how you are running in the cloud then, you know, you have like the constrained static set of machines, you want to distribute those machines amongst different resources and they were used for YARN there. But, in the cloud, you know, you can bring up machines left and right. And so, just from the perspective of being a resource manager, it probably doesn't have that, you know, that bigger need and specifically in the cloud, but from the perspective of providing these, you know, richness of APIs which allow you to, for example, the Hive is initiative they can now program Hive to not just to use MapReduce, but have much more richer plans of doing jobs and things like that. It brings those benefits to the ecosystem. I think that is where the true value of YARN belongs. And in the cloud context, definitely, it's not that interesting from the resource management point of view, but it's much more interesting in terms of what it enables other projects to do, in terms of, you know, workloads that now, it now can be used to be programmed on to your data or the previous workloads that can be done in a much more efficient way.
Eric Kavanagh: Right.
Ashish Thusoo: I had, you know, one more just, you know, adding to Mike, you know, there was another provocative thing which was said which is around and, you know, which was around, hey, treating the cloud as yet another data center. I think you… you know, that is one point of view which most companies, you know, look at and say, okay, you know, that's the easiest point of view actually to look at saying that, okay, you know, this is, you have bunch of machines on your, you know, you have compute, you have storage and you have networking on your on-prem data center and cloud provides the same thing out there. So, I am just going to do exactly the same thing that I am doing on my own on-prem data center and do the same thing in the cloud and viola - that's how it should work. What we have found out, you know, having been running the clouds for, the two clouds where, you know, you have the ability to provision VMs within a minute, the ability to use a highly scalable objects to store data and things like that. We have found that cloud actually, the cloud architecture and these inherent abilities actually enable different ways of doing things, you know, and this is what I have talked about in my slide as well, you know, the whole notion of… in just, you know, in… the perspective of just Hadoop, the whole notion of just running the static cluster versus on-demand dynamic clusters, that is something that you don't see happening in an on-prem data center, you know, versus, you know, true cloud where the, you know, there's a enough capacity to be able to support these types of workloads.
And so, I think there is definitely some shift needed. You know, the big fear for me is that if you just treat cloud as yet another data center, you actually… while you, you know, there are lot of other benefits, but there are lot of intrinsic benefits that you might ignore if you, you know, start doing that, security is another one, the way you deal with security and the cloud, there's a lot of differences in terms of how you would deal with, you know, in… from on-prem perspective and so on and so forth. Just wanted to add that in, from my perspective.
Eric Kavanagh: Sure. Так. Без проблем. We have one attendee asking about various types of use cases like logistics and specifically HR, so I threw up this website of Workday, wanted to make a couple of comments on that, and then Gilbert, maybe I will bring you in to comment on the whole concept of architecture. So, in terms of HR, I actually heard a rather well, I will call it, let's say comment from an analyst a couple of months ago, a few months ago I suppose, about going to the cloud for Human Resources. I have been doing some research on this to know lot of HR-type functions are being outsourced to the cloud, certainly stuff like payroll is fairly easy to outsource these days, benefits programs and insurance, that kind of thing, but there is a real serious caveat to keep in mind and Gilbert, this is what I want you to comment on from an architectural perspective, which is you have to be very careful about when you are moving to the cloud for some kind of critical business service because you either want to be very strategic and very thoughtful, meaning you go through the process of making sure that you understand what's going on in the cloud and what's staying on-premise, and there is the folk from Attunity will tell you that truly one of the things they specialize in is making those connections such that they provide the kind of connectivity you need because what's happening with some organizations is they go and they will use Workday for example, to put some of their HR stuff to the cloud, but they don't do it all or they don't do enough or they don't think through it enough, and what happens then? Then they want to happen to manage the cloud environment and their original on-premises environment as well, which means, guess what? He just increased your cost, you doubled your workload and you created lots and lots of headaches for people, and that's usually when someone gets fired and then the guy who comes in has a real mess to clean up. So, you really do have to think through the architecture of the data and the systems and the processes and make sure you dot all your i's and cross all your t's and with that, I will throw it over to Gilbert for comments. I am guessing it will be with that, but maybe not.
Gilbert Van Cutsem: Alright. Так. So, just another example of something similar, just yesterday happened to me. So, I lost one of my doctors because he went out of business. Не знаю. It sounds amazing. He was a chiropractor and he went out of business. I don't know why, but, the thing was this - I have no chiropractor and I like to go to a chiropractor, you know, occasionally. So, I find a new one and it's close to, you know, close by and all that. It's all good. And so, they go, as usual, you have to do all the paperwork and let us know if blah, blah, blah. But, the good news is we have a new system because, you know, we're on the Web now, in the cloud. It's all cool. I go like, okay, you know, and they send me a link and I have to do all the paperwork online, which is fine and I put all kinds of things in there about, kind of secret like, you know, social security numbers and that type of stuff and who I am, how old I am… all my details. I put it all there and I submit because of course, I do believe in technology.
And then I walk up to the office, the next day for my first appointment and they go like, "Did you do the form?" I go like, "Yes, Ma'am, I did." "Okay. Then we will go and find it." I go like, "Well, I did do it." And she goes, "Yes, we know because you are the fifth person today to walk in, to walk up to me and complain about that's not finding the form." And I go like, "But, you can't be serious about that. This is pretty confidential information. Where is it?" This happened to me yesterday, yeah, which brings back the whole issue and the whole idea of who owns the data really, right?
I know you move to the cloud and people get onboard it into a new system like in this case, my chiropractor and they subscribe to a new system. It's in the cloud, it's all safe, it's fully multi-tenant, they used to have it on-premise system, all the data was moved into the new system, but now apparently, they can't get it out.
Eric Kavanagh: Yeah. That's not good.
Gilbert Van Cutsem: So, I don't know where my data is and assume she gets really mad, right? She goes like, "Oh, this is impossible. I pay you money and my customers are, my patients, sorry, are unhappy and with the data is gone, I wanna get away from you. I wanna go to a different system maybe also in the cloud, right?" How do you then move the data of your patients in this case, the data your business owns, to another system? How do I get it out first of all and then load it again? I am sure ETL in the cloud is an answer somehow and we have experts on that, but it's not that easy.
Eric Kavanagh: Yeah, but that's exactly right and folks, I threw up this other slide here, this other, another screen to show you where you can find the archives. So, anytime you want to check out - oh, there's the inside of our website, I don't want to show you that. So, here is the main website and on the right column here you can see a different show. So, TechWise is right here. You click on that and on these different pages where we will actually post the archives. So, we do archive all these webcasts.
Actually, I wanna throw back over to Mike, I suppose, and then also to Lawrence to kinda comment on this story that Gilbert just told. So, Mike, there is some, kind of, now this is kind of a small-business concern. You guys are more focused on big business, but nonetheless, if a large company who works with you and they want to go somewhere else, how do you manage that movement of the data and securing the data and so forth?
Mike Miller: Yeah. Це дуже гарне запитання. It's one that used to come up a lot more often than it does now in sales calls, which I find to be an interesting anecdotal piece of evidence for a call. You know, I think that first of all, we are talking about a lot technologies, or at least employment models that are relatively new. This is very early in the cloud, right? We are talking about things like cloud, or in the case of data, we are talking about analytics services like Hadoop for databases and then NoSQL or NewSQL formats. You know, these are fundamentally new technologies and especially around things like, Hadoop and NoSQL, all of the ancillary services, the connectors, right, the… you know, if I want to find somebody that consults on Oracle, that's something I can find, but that entire ecosystem is just kinda spinning up right now.
So, it's getting easier day over day to say, okay, you know, give me a service that can read from 'x' traditional system, put it into Cloudant and do something with it and then put it back into 'y' traditional system, right? So, now they are very, you know, there are quite a few those things and it's actually more challenging, I think, for a typical user to understand what is the best choice, right, if I want to connect all the new technologies on-prem and then in the cloud.
So, I think as a cloud vendor, it's really on us to be very opinionated about that and to help walk users through the landscape of possibilities because the shift's a lot of new and I think that the average user, whether it's a CTO, CIO or whether it's actually developer, is coming up that learning curve fairly quickly. I think that a lot of the kind of baseline stuff is being worked out, cross-cloud connectors and, you know, taking away the really most basic worries about say, you know, bandwidth cost and whether or not you are going out on the wide area network versus staying on, you know, VPN the entire time. A lot of those things have been kinda abstracted away and what is the true promise of the cloud.
But, in general, I think you are also seeing, you know, that anecdote that we heard was, you know, something that is probably isomorphic to, you know, what will happen to your buying into a brand, you know, in a past lifetime, you know, what happens if that brand doesn't deliver, how much can I really trust that brand? I think you are seeing exactly the same thing happen in the cloud and, you know, I think that companies like Microsoft, Amazon, IBM and Google are, you know, very much stepping up and saying that there will at least be multiple pillars of trust and making sure that you are not going in with a company that's going to dry up and swallow your data, or worse, lose it or distribute it, right? And so, they are, at least, they are independable and they are anchoring, you know, the development of such ecosystem. But, I say to close, it's very early and a lot of that tooling is just getting started and, you know, I think you are going to see consulting services, you know, really putting a lot of focus on that in the very near term.
Eric Kavanagh: Yeah. That's a really, really good comment you just made there. I like that "pillars of trust" concept because the other thing to keep in mind here is you do once again have a number of fierce competitors vying for market share and for IT span, it's just like the old days all over again. Really, in the old days, by which I mean last year, you had IBM and Oracle and Microsoft and SAP and then Computer Associates and Informatica and all these companies, Teradata, etc. In the new world, now you have got, of course, Microsoft with their Du Jour, you have got Google, you have got Amazon Web Services, you know, you have Facebook in certain context. So, you have all these companies that are not necessarily so excited about working with each other, but you do have things like APIs. And so, one of the nice things that APIs really are crystallizing into the connectors that hold together the larger cloud, I suppose, and I want to throw up a slide for Lawrence to kinda comment on all this.
Yeah, Lawrence, obviously, you guys have specialized in the space for a while. So, I think you do have awesome advantage over maybe some newcomers. But, nonetheless, these are all very serious concerns because how data gets stored in the cloud is different than how it gets stored on-premise. Then I think that Mike makes a really good point that this whole space is just starting to take shape and it's gonna take a while for things to seriously fall into place and to crystallize. So, what's some advice that you have for companies that you… I guess, you basically concur with Mike, or what do you think?
Lawrence Schwartz: Yeah. I think it's, you know, what we see is when people are taking advantage of the cloud for a lot of use cases as compared to on-premise, you know, they are looking at kind of, you know, two different things. One is, they are looking at, you know, as we talked about this a little bit earlier, how do I… how does it incrementally add value to what I do, how do I, you know, how is it kind of an add-on? And so, you know, when back to when I talked about the Etix as a company where, you know, they are not moving all their operations over to Redshift, you know, yet per say, but they're saying, "I do a lot of work on Oracle, I wanna offer some of this to some kind of analytics from different environments, you know, kinda figure out, maybe do some sandbox stuff there, and, you know, and then learn about my business that way, and that way they can kind of carve out what they want, move it over there and do the work and, you know, it's less of a concern with moving, you know, everything over and all the records and whatnot. So, I think they look at that as one way that to take advantage of it with having less issues.
I think the other thing is people are also looking at these cases that are and aren't excellent fit for the cloud that are very, very hard to do in other ways. So, I will take another example, you know, we work with a company called, you know, iN DEMAND. They are video on-demand player. They do this work for Comcast and all of this and they will actually, you know, take the data that they are working with, they will take the media files and they will supply it to the cloud for doing their processing, do their processing there, and then they will consume it back for their on-premise customers. And then, you know, that gets upstairs to third parties that consume reviews. So, it's, you know, if you want to think about how the company is approaching it, it's, you know, how do I get my… how do I add value, how do I maybe not move the whole business at first, how do I get the right use cases, how do I add incremental value to what I do? And that helps kinda build about the confidence on what they are doing and as part of the process, and of course, you know, a key piece of that is, you know, making sure that they can do that securely and reliably and, you know, we make sure to the latest levels of encryption and other things to take care of that as much as we can on the transport side. But, that's how I think a lot of companies are approaching the problem.
Eric Kavanagh: Okay. Добре. And maybe Ashish, I will throw one last question over to you. I am just throwing up, actually, I like your architecture slide. Even this slide I think is pretty neat. So, one of the questions in, you know, HDFS of course, by design the default is to save every piece of data three times. You can adjust that, of course, you can make it twice, you can make it four times, that does provide some overhead over time, obviously, but it is a way of backing up data. Anyway, that was the whole idea, one of the key ideas, right, from HDFS originally is redundancy, is not wanting to lose data. I've kind of been wondering how that's going to affect things like replication servers, quite frankly, when Hadoop does that natively.
But, one of the attendees is asking - "Can you request physical backups like tape for your cloud data? I read of a company that had their cloud management console hacked and their data and online backups trashed."
You know, we are hearing about these breaches all the time, they are getting more and more serious, they are killing major brands like Target, like Home Depot, etc. So, security is an issue and backup and restore is an issue. Can you kinda talk about how you guys address things like backup and restore and security?
Ashish Thusoo: Yeah, sure. So, we… So, I will talk about that and talk about HDFS first. So, as far as Qubole is concerned, you know, we… since we work on the cloud, we use the objects store there to store data. So, again, this is one of the other key differences why, you know, big data service on the cloud becomes different from on-prem. On-prem, we have always talked about, you know, HDFS and so on and so forth, but if you go to the cloud, a lot of the data is actually stored in their object stores. For example, that could be an S3 on AWS, Google cloud storage on Google Cloud, on Google Compute Engine, and so on and so forth.
Now, many of these object stores have built-in capabilities of providing you things, you know, these object stores, by the way, you know, one of the big differentiators from real clouds to actually your own data center is the presence of these object stores and the reason that these object stores are cool pieces of technology, you know, they are able to provide you very cheap storage and along with that they are able to provide you things like, you know, having the ability to actually have a disaster recovery thing built in and, you know, as part of that interface, you don't have to think about it. And also, they have tiered, you know, there is tiering there as well. For example, S3 has high availability and it's online access, but it's much more expensive. It's more expensive than say, a glacier storage on AWS, which is low, you know, it gives you, you know, the turnaround time is like four hours or something like that and it's much cheaper. So, you start thinking of, you know, those types of services. I think cloud providers are essentially providing those types of services to augment the need for things like tapes and so on and so forth. And also, to provide you disaster recovery or rather, you know, replication built in into these systems so that, you know, you are protected from disasters, regional disasters and things like that.
So, that is what Qubole heavily, you know, depends upon and the great thing is that a lot of… all the cloud providers are providing this. These are fundamentally very difficult problems to solve and by being built into some of the object stores that these cloud providers provide, you know, that is one more additional reason of, you know, storing this data, you know, in some of these object stores and using the cloud for that as opposed to trying to, you know, figure out, you know, replication, running two Hadoop clusters across different, you know, regions and, you know, trying to replicate data from HDFS from one region to the other, which is doable, we did that a lot when I was back at Facebook running this stuff there, but, you know, fundamentally, the object stores in the cloud just made it that much more easy.
Eric Kavanagh: Okay. Great! Well, folks, we've burned through an hour and 15 minutes or so, a lot of great questions there and a lot of great presentations. Thank you so much to all of our vendors today and of course, to both of our analysts on the show today. A big thank you, of course, to Qubole, Cloudant and Attunity. We are gonna put the archive up at insideanalysis.com. I showed you where that goes, and big thanks to our friends at Techopedia as well.
So, folks, thank you again for your time and attention. This concludes Episode 3 of TechWise, our relatively new show. There is Episode 4 coming up pretty soon. It's gonna be on the big data ecosystem. So, watch for information on all that. And then till then, folks, thank you so much. We will catch up with you next time. Піклуватися. Бувай.